منابع مشابه
Constrained K-Means Clustering
We consider practical methods for adding constraints to the K-Means clustering algorithm in order to avoid local solutions with empty clusters or clusters having very few points. We often observe this phenomena when applying K-Means to datasets where the number of dimensions is n 10 and the number of desired clusters is k 20. We propose explicitly adding k constraints to the underlying clusteri...
متن کاملConstrained clustering with k-means
We introduce a k−means type clustering in the presence of cannot–link and must–link constraints. First we apply a BIRCH type methodology to eliminate must–link constraints. Next we introduce a penalty function to substitute cannot–link constraints. When penalty values increase to +∞ the original cannot–link constraints are recovered. The preliminary numerical experiments show that constraints h...
متن کاملDiabetes Classification Using K-means
This paper presents a survey on proposed quantized techniques in medical field to understand which age group of people are being affecting by diabetes. The overall aspiration of the diabetes data mining procedure is to extract information from diabetes data set and convert it into a comprehensible arrangement for further use. This paper deals with diabetes and proposed a data mining system usin...
متن کاملConstrained K-means Clustering with Background Knowledge
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular k-means clustering algorithm can be profitably modified to make use of this information. In experiments with artificial constraints on six data sets, we...
متن کاملClustering Using Boosted Constrained k-Means Algorithm
This article proposes a constrained clustering algorithmwith competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering, Technology & Applied Science Research
سال: 2018
ISSN: 1792-8036,2241-4487
DOI: 10.48084/etasr.2149